Windows AMD Setup
Run GPUFlow on Windows with AMD GPUs using Windows Subsystem for Linux 2 (WSL2) and ROCm drivers. This setup is experimental but allows Windows users with AMD hardware to participate in the GPUFlow network.
Prerequisites
Section titled “Prerequisites”Verify your system meets these requirements:
- Windows 10 version 2004+ or Windows 11 (any version)
- AMD RX 6000/7000 series GPU with 12GB+ VRAM
- 32GB system RAM (minimum due to WSL2 overhead with AMD)
- Administrator access to install software
- Stable internet connection (25+ Mbps upload)
Step 1: Check hardware compatibility
Section titled “Step 1: Check hardware compatibility”Verify your AMD GPU is supported:
Check your GPU model:
- Right-click desktop, select “AMD Software”
- Go to “System” tab
- Note your GPU model under “Graphics Hardware”
Supported AMD GPUs:
- RX 6600, 6700 XT, 6800 XT, 6900 XT
- RX 7600, 7700 XT, 7800 XT, 7900 XT, 7900 XTX
- Radeon Pro W6000+ series
Step 2: Install Windows AMD drivers
Section titled “Step 2: Install Windows AMD drivers”Install the latest AMD Adrenalin drivers:
- Visit AMD’s driver download page
- Select your GPU model
- Download and install AMD Software: Adrenalin Edition
- Restart your computer
Step 3: Enable WSL2
Section titled “Step 3: Enable WSL2”Install Windows Subsystem for Linux 2:
# Run PowerShell as Administratorwsl --install
# Restart computer when promptedAfter restart, verify installation:
wsl --versionStep 4: Install Ubuntu 22.04 on WSL2
Section titled “Step 4: Install Ubuntu 22.04 on WSL2”# Install Ubuntuwsl --install -d Ubuntu-22.04
# Set as default distributionwsl --set-default Ubuntu-22.04Configure Ubuntu:
- Launch Ubuntu from Start menu
- Create username and password
- Complete initial setup
Step 5: Install ROCm in WSL2
Section titled “Step 5: Install ROCm in WSL2”ROCm provides AMD GPU compute support in Linux containers.
Launch WSL2 and install ROCm:
# Update Ubuntusudo apt update && sudo apt upgrade -y
# Install prerequisitessudo apt install wget gnupg2
# Add ROCm repositorywget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/5.7/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list
# Install ROCmsudo apt updatesudo apt install rocm-dev rocm-libs rocm-utils
# Add user to required groupssudo usermod -aG render,video $USERLogout and login to WSL2 for group changes:
exit# Then restart WSL2 from PowerShell: wslStep 6: Verify GPU access
Section titled “Step 6: Verify GPU access”Test that WSL2 can see your AMD GPU:
# Check if GPU is detectedlspci | grep -i amd
# Test ROCm/opt/rocm/bin/rocminfo
# Check device filesls -la /dev/dri/You should see your AMD GPU listed and device files like card0 and renderD128.
Step 7: Install Docker with AMD support
Section titled “Step 7: Install Docker with AMD support”Install Docker in your WSL2 environment:
# Install Dockercurl -fsSL https://get.docker.com -o get-docker.shsudo sh get-docker.sh
# Add user to docker groupsudo usermod -aG docker $USER
# Start Docker servicesudo service docker startConfigure Docker for AMD GPUs:
# Create Docker daemon configurationsudo mkdir -p /etc/dockersudo tee /etc/docker/daemon.json > /dev/null <<EOF{    "runtimes": {        "rocm": {            "path": "/usr/bin/rocm-runtime",            "runtimeArgs": []        }    }}EOF
# Restart Dockersudo service docker restartStep 8: Test AMD GPU in container
Section titled “Step 8: Test AMD GPU in container”Test GPU access with a ROCm container:
# Test basic GPU accessdocker run --rm -it \  --device=/dev/dri \  --device=/dev/kfd \  --security-opt seccomp=unconfined \  --group-add video \  --group-add render \  rocm/pytorch:latest \  rocm-smiIf successful, you’ll see your AMD GPU information displayed.
Step 9: Deploy GPUFlow provider
Section titled “Step 9: Deploy GPUFlow provider”Create data directory:
sudo mkdir -p /opt/gpuflowsudo chown $USER:$USER /opt/gpuflowRun GPUFlow provider with AMD GPU support:
docker run -d \  --name gpuflow-provider \  --restart=unless-stopped \  --device=/dev/dri \  --device=/dev/kfd \  --security-opt seccomp=unconfined \  --group-add video \  --group-add render \  --network=host \  -v /opt/gpuflow:/data \  -e GPUFLOW_API_KEY="get-from-dashboard" \  -e GPU_VENDOR="amd" \  ghcr.io/gpuflow/provider:latestVerify provider startup:
docker psdocker logs gpuflow-providerLook for:
- AMD GPU detected in logs
- ROCm initialization successful
- Network registration complete
Step 10: Windows startup automation
Section titled “Step 10: Windows startup automation”Create startup script:
cat > ~/start-gpuflow-amd.sh << 'EOF'#!/bin/bashsudo service docker startsleep 10  # AMD needs longer startup timedocker start gpuflow-providerEOF
chmod +x ~/start-gpuflow-amd.shWindows startup batch file:
- Press Win + R, typeshell:startup
- Create GPUFlow-AMD.bat:
@echo offwsl -d Ubuntu-22.04 -u your-username /home/your-username/start-gpuflow-amd.shManaging your AMD provider
Section titled “Managing your AMD provider”Provider management commands:
# Check statusdocker ps
# Monitor logs for AMD-specific messagesdocker logs gpuflow-provider -f | grep -i rocm
# Restart provider (AMD needs clean restart)docker stop gpuflow-providersleep 5docker start gpuflow-provider
# Check GPU utilizationrocm-smiPerformance considerations
Section titled “Performance considerations”AMD-specific limitations:
- ROCm has less software support than CUDA
- Some ML frameworks may not work optimally
- Gaming impact may be higher than NVIDIA setups
- Longer container startup times (30-60 seconds)
Resource usage:
- WSL2 overhead: 2-4GB RAM for AMD setup
- ROCm drivers use more system resources
- Gaming performance impact: 5-10% when provider running
Troubleshooting AMD issues
Section titled “Troubleshooting AMD issues”GPU not detected:
# Check ROCm installation/opt/rocm/bin/rocminfo
# Verify device permissionsls -la /dev/dri/ls -la /dev/kfd
# Fix permissions if neededsudo chmod 666 /dev/kfdsudo chmod 666 /dev/dri/*Container startup failures:
# Check ROCm servicesudo systemctl status rocm
# Restart ROCm if neededsudo systemctl restart rocm
# Clear Docker containers and retrydocker system prune -fPoor performance:
# Check GPU clocksrocm-smi --showclocks
# Monitor temperaturerocm-smi --showtempKnown limitations
Section titled “Known limitations”Current AMD Windows setup limitations:
- Software compatibility: Many AI frameworks prefer CUDA
- Performance: 15-20% slower than native Linux ROCm
- Stability: ROCm on WSL2 is less stable than NVIDIA CUDA
- Support: Limited community knowledge for troubleshooting
Next steps
Section titled “Next steps”Your Windows AMD provider is configured:
- Create your GPUFlow account
- Link your AMD hardware in dashboard
- Configure AMD-optimized listings
- Monitor performance and earnings