Skip to content

Access Methods

Multiple ways to access your rented GPU environment through secure VPN tunnel.

Direct URL access:

  • http://10.77.x.2:4200 - Web terminal interface
  • No additional software required
  • Works on all modern browsers
  • Full Linux command line access

Features:

  • xterm.js terminal emulation
  • Copy/paste support (Ctrl+Shift+C/V)
  • Resizable terminal window
  • File upload/download interface
  • Multi-tab terminal sessions

Basic navigation:

Terminal window
# Check GPU status
nvidia-smi
# Monitor resources
htop
# Navigate workspace
cd /workspace
ls -la

File management:

Terminal window
# Upload files via web interface drag-and-drop
# Or use command line tools
wget https://example.com/dataset.zip
unzip dataset.zip
# Download results
# Use web interface download button
# Or prepare files in /workspace/downloads/

Connection details:

  • Host: 10.77.x.2
  • Port: 22
  • Username: rental
  • Authentication: Password or key-based
Terminal window
# Basic connection
# With custom port
ssh [email protected] -p 2222
# Using SSH key
ssh -i ~/.ssh/gpuflow_key [email protected]

Generate key pair:

Terminal window
# Create new key for GPUFlow
ssh-keygen -t ed25519 -f ~/.ssh/gpuflow_key
chmod 600 ~/.ssh/gpuflow_key

Add public key to rental:

Terminal window
# Copy public key
cat ~/.ssh/gpuflow_key.pub
# Add to authorized_keys in rental environment
echo "ssh-ed25519 AAAA..." >> ~/.ssh/authorized_keys

Port forwarding:

Terminal window
# Forward Jupyter to local port 8888
ssh -L 8888:localhost:8888 [email protected]
# Forward multiple services
ssh -L 8888:localhost:8888 -L 7860:localhost:7860 [email protected]
# Dynamic SOCKS proxy
ssh -D 1080 [email protected]

X11 forwarding:

Terminal window
# Enable GUI applications over SSH
# Launch GUI applications
firefox &
code .

File synchronization:

Terminal window
# Rsync for efficient transfers
rsync -avz ./local_data/ [email protected]:/workspace/
rsync -avz [email protected]:/workspace/results/ ./results/
# SCP for simple transfers
scp model.bin [email protected]:/workspace/
scp [email protected]:/workspace/output.txt ./

Connection details:

  • VNC Server: 10.77.x.2:5901
  • Display: :1
  • Default password provided in rental credentials

VNC clients:

  • Windows: TightVNC, RealVNC, UltraVNC
  • macOS: Built-in Screen Sharing, RealVNC
  • Linux: Remmina, TigerVNC, Vinagre
  • Mobile: VNC Viewer (iOS/Android)

Connect via VNC client:

  1. Enter server address: 10.77.x.2:5901
  2. Input VNC password from rental credentials
  3. Select color depth and quality settings
  4. Connect to desktop environment

Web-based VNC:

  • http://10.77.x.2:6080 - noVNC web interface
  • Browser-based desktop access
  • No client installation required
  • Optimized for touch devices

Pre-installed software:

  • Ubuntu Desktop or similar Linux environment
  • Firefox web browser
  • LibreOffice suite
  • Text editors (gedit, nano, vim)
  • Development tools (VSCode, git)
  • Graphics tools (GIMP, Blender)

GPU acceleration:

  • Direct GPU access for applications
  • CUDA support for development
  • OpenGL hardware acceleration
  • Video encoding/decoding capabilities

Forward remote services to local machine:

Terminal window
# Jupyter Lab access
ssh -L 8888:localhost:8888 [email protected]
# Access via http://localhost:8888
# TensorBoard
ssh -L 6006:localhost:6006 [email protected]
# Access via http://localhost:6006
# Custom application
ssh -L 3000:localhost:3000 [email protected]
# Access via http://localhost:3000

Expose local services to rental environment:

Terminal window
# Share local web server with rental
ssh -R 8080:localhost:80 [email protected]
# Rental can access via http://localhost:8080
# Database access
ssh -R 5432:localhost:5432 [email protected]
# Rental can connect to local PostgreSQL

SOCKS proxy for flexible routing:

Terminal window
# Create SOCKS proxy
ssh -D 1080 [email protected]
# Configure browser to use proxy
# Firefox: Network Settings > SOCKS Host: localhost:1080
# Chrome: --proxy-server="socks5://localhost:1080"

Jupyter environments:

  • http://10.77.x.2:8888 - JupyterLab interface
  • http://10.77.x.2:8889 - Jupyter Notebook (classic)
  • Pre-installed kernels: Python, R, Julia
  • GPU-enabled ML libraries ready

AI/ML interfaces:

  • http://10.77.x.2:7860 - Stable Diffusion WebUI
  • http://10.77.x.2:8188 - ComfyUI
  • http://10.77.x.2:3000 - Custom ML dashboards
  • http://10.77.x.2:6006 - TensorBoard

Development tools:

  • http://10.77.x.2:8080 - VS Code Server
  • http://10.77.x.2:3001 - Code-server alternative
  • http://10.77.x.2:9000 - File manager
  • http://10.77.x.2:8025 - Email/SMTP testing

Check running services:

Terminal window
# List active services
sudo systemctl list-units --type=service --state=active
# Check specific service
sudo systemctl status jupyter-lab
# Service logs
sudo journalctl -u jupyter-lab -f

Restart services:

Terminal window
# Restart Jupyter
sudo systemctl restart jupyter-lab
# Restart all web services
sudo systemctl restart gpuflow-services

Custom service startup:

Terminal window
# Start additional services
cd /workspace
python -m http.server 8000 &
# Background processing
nohup python train_model.py > training.log 2>&1 &

Web interface features:

  • Drag-and-drop file upload
  • Directory upload support
  • Progress indicators
  • Resume interrupted transfers
  • Bulk download as ZIP

Limitations:

  • Individual file size: <2GB
  • Total upload: <10GB per session
  • Browser timeout on very large files

wget/curl downloads:

Terminal window
# Download datasets
wget https://example.com/dataset.tar.gz
curl -O https://example.com/model.bin
# Download with progress bar
wget --progress=bar https://example.com/large_file.zip

SCP transfers:

Terminal window
# Upload single file
scp local_file.txt [email protected]:/workspace/
# Upload directory
scp -r ./data_folder/ [email protected]:/workspace/
# Download results
scp [email protected]:/workspace/results.tar.gz ./

Rsync synchronization:

Terminal window
# Efficient sync with progress
rsync -avz --progress ./dataset/ [email protected]:/workspace/dataset/
# Resume interrupted transfers
rsync -avz --partial --progress ./large_files/ [email protected]:/workspace/
# Sync with exclusions
rsync -avz --exclude='*.tmp' --exclude='__pycache__' ./project/ [email protected]:/workspace/

Direct downloads:

Terminal window
# Google Drive (with gdown)
pip install gdown
gdown https://drive.google.com/uc?id=FILE_ID
# AWS S3
aws s3 cp s3://bucket/file.zip /workspace/
aws s3 sync s3://bucket/dataset/ /workspace/dataset/
# Azure Blob Storage
az storage blob download --container-name mycontainer --name myfile.zip

Upload results:

Terminal window
# Upload to S3
aws s3 cp /workspace/results.tar.gz s3://bucket/
# Upload to Google Drive
# Use web interface or gdrive CLI tool

SSH optimization:

Terminal window
# ~/.ssh/config optimization
Host gpuflow-rental
HostName 10.77.x.2
User rental
Compression yes
ServerAliveInterval 60
ServerAliveCountMax 3
TCPKeepAlive yes

VNC optimization:

  • Reduce color depth for faster rendering
  • Lower screen resolution if possible
  • Disable desktop effects and animations
  • Use local VNC client instead of web browser

Bandwidth testing:

Terminal window
# Test upload speed
dd if=/dev/zero bs=1M count=100 | ssh [email protected] 'cat > /dev/null'
# Test download speed
ssh [email protected] 'dd if=/dev/zero bs=1M count=100' | cat > /dev/null
# iperf3 testing
ssh [email protected] 'iperf3 -s' &
iperf3 -c 10.77.x.2

Optimize for latency:

  • Use geographically close providers
  • Prefer wired internet over WiFi
  • Close bandwidth-heavy applications
  • Use compression for text-based protocols

Monitor resource usage:

Terminal window
# Real-time monitoring
htop
nvidia-smi -l 1
iotop
# System information
free -h
df -h
lscpu

Network monitoring:

Terminal window
# Monitor network usage
iftop
nethogs
ss -tuln

Network isolation:

  • Services only accessible through VPN tunnel
  • No direct internet exposure
  • Provider cannot access your local network
  • Encrypted connections for all protocols

Authentication:

  • Unique credentials per rental
  • SSH keys preferred over passwords
  • VNC passwords auto-generated
  • No persistent access after rental expiry

Sensitive data handling:

Terminal window
# Encrypt sensitive files
gpg --cipher-algo AES256 --compress-algo 1 --s2k-mode 3 \
--s2k-digest-algo SHA512 --s2k-count 65536 --symmetric file.txt
# Secure file deletion
shred -vfz -n 3 sensitive_file.txt

Network security:

  • All connections encrypted (SSH, HTTPS, VNC with encryption)
  • WireGuard provides additional encryption layer
  • No cleartext protocols used
  • Certificate validation for HTTPS

During rental:

  • Change default passwords immediately
  • Don’t store credentials in files
  • Log out when not actively using
  • Monitor for unusual activity

Before expiry:

  • Download all important data
  • Clear browser cache and saved passwords
  • Remove SSH keys from local agent
  • Verify no background processes remain